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A compact mathematical formulation for ab initio tight binding calculations of the 
electronic band structure of crystalline materials is presented. Within this formulation it is 
shown that, for a large number of crystals, the multicenter integrals, per se, do not need to 
be calculated. This results in a considerable savings in computational effort and greatly 
reduces the amount of information which must be stored. These advantages are of particular 
importance in supercell calculations such as those encountered in investigating the electronic 
structure of surfaces and interfaces. 0 1989 Academic Press, Inc. 

I. INTRODUCTION 

The first principles calculation of the electronic structure of crystalline materials 
by the method of tight binding or linear combination of atomic orbitals (LCAO) 
first presented by Bloch in 1928 [l] has enjoyed considerable success over the last 
twenty years [2]. During this time it has been clearly demonstrated that this 
method is capable of accurately predicting the band structure and associated bulk 
properties of not only the so-called “tightly-bound” systems but also of the “free- 
electron” materials as well [3-51. 

As we move into the study of surface states [6] and other phenomena requiring 
large numbers of atoms within the unit cell, one of the most outstanding advan- 
tages of tight binding is its ability to accurately predict the electronic structure with 
an extremely small number of basis functions per atom. Since the number of basis 
functions is proportionately small, this means that systems which contain large 
numbers of atoms within the unit cell can be investigated while still employing only 
moderately large secular equations. There are two major difficulties still encoun- 
tered in performing a tight binding calculation with large numbers of atoms within 
the unit cell. 

The first problem is centered about the sometimes excessive amount of machine 
time needed to calculate (and the disk space to store) the enormous number of mul- 
ticenter integrals required for a truly accurate treatment of the electronic structure 
of these materials. This is especially true in surface calculations where a long slender 
rectangular (orthorhombic) unit cell is employed, and yet a multitude of k-points 
within the 2-dimensional Brillouin zone must be investigated. In the following 
sections, a factorized tight binding formulation (FTB) is presented. The FTB 
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formalism employs a novel computational strategy which effectively reduces an N3 
problem into a 3N problem. In materials involving rectangular unit cells (which is 
frequently the case in surface calculations), the FTB formalism does not even 
require the evaluation of the multicenter integrals per se. This drastically reduces 
the quantity of information which must be calculated and permanently stored. The 
program development described in the following sections takes full advantage of 
the FTB formalism. Although these programs are general in nature and entirely 
independent of crystalline symmetry, it is in the area of thin films, surface states, 
and interfaces that the FTB formalism excels. 

The second difliculty is principally centered about the problems involved in 
achieving true self-consistency when the number of atoms within the unit cell is 
large. For problems of the bulk, nonself-consistent calculations frequently work 
quite well, but the same cannot be said for problems involving thin films where one 
would expect considerable rearrangement of the bulk charge distribution as one 
approaches the surface. The FTB formalism appears to be ideally suited for exten- 
sion to self-consistency. Additionally, the same general philosophy of factorization 
can also be applied to calculations of the crystalline charge density. 

II. BASIC NOMENCLATURE AND TIGHT BINDING FORMULATION 

In this paper Hartree atomic units will be used throughout unless stated 
otherwise. The three primitive lattice vectors will be denoted by a,, a,, and a3. 
A general lattice point is then given by 

R, = vial + v2a2 + v3a3, (2.1) 

where 

v=(v,, v2, v,), vi = integer. 

The central unit cell with edges a,, a,, a3 and volume 52 may contain many atoms 
each with atomic number Zj and position tj. The reciprocal lattice vectors, K,, are 
written as 

where 

P=@lPP2,P3)? pi = integer, 

and where 

(2.2) 

bi = 2naj x ak/52, i, j, k = cyclic permutation of 1, 2, 3. (2.3) 
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The single particle Hamiltonian is written as 

$9 = -iv* + V(r), (2.4) 

where the effective crystalline potential, V(r), exhibits the periodicity of the lattice: 

V(r + R,) = V(r). (2.5) 

In addition, the crystalline potential is assumed here, without loss of generality, to 
be written in the form 

V(r) = V’(r) + Vg(r) + P(r), (2.6) 

where 

Wr)=~~ uJIr-(R,+t,)l, 

Vg(r)=ii U:[r-(R”+t,)], 

V”(r) = i &(C) eiKp.‘c, 
u 

(2.7) 

(2.8) 

(2.9) 

and where 

UT( r ) = - Zje - “i”/r, 

uig(r) = C C @r W LAY, 9, 
y nlm 

xnrm(y, r) = xny’zm cyr2. 

(2.10) 

(2.11) 

(2.12) 

Since the decomposition of Eq. (2.6) is not unique, V(r) is chosen in such a 
manner as to make the Fourier components, UE, as small and as rapidly 
convergent as is reasonably possible. As a result, Vk(r) can usually be ignored in 
nonself-consistent calculations of the bulk. 

The variational wave function is written as an expansion of Bloch functions 
formed from Gaussian orbitals 

J/k r) = C CC C”,‘(ai, k) b,ii,(ai, k, r), 
i i nlm 

where 

b,jm(ai, k, r) = N-“* C eik’Rv x,,,,,, [ai, r - (R, + tj)], 

(2.13) 

(2.14) 

and where N stands, symbolically, for the number of unit cells in the crystal. The 
orbital exponents, ai, are usually obtained from atomic or atomic-like solutions 
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based on the isolated individual atoms. Usually, certain constraints are placed on 
the variational parameters. These constraints are of the form 

11 c Gi,Atli, k) Cn;W;, k) = 0, 
i i n/m 

and usually arise from orbital contraction and core orthogonalization [2]. For 
simplicity, in this development such constraints will be ignored and the full 
variational freedom of Eq. (2.13) will be preserved. 

Application of the variational principle leads to the familiar secular equation of 
the form 

IH-ESJ =o, (2.16) 

where the ith root, Ei, is an upper bound to the ith band [7] for the Hamiltonian 
given by Eq. (2.4). The matrix elements contained in Eq. (2.16) are given by 

(2.17) 

where 

ra =r-A, 

r,=r-B. 

The decomposition in Eq. (2.17) is valid for any operator 0 which is invariant 
under all symmetry translations, R,, of the lattice. In particular, when 0 is the 
operator X of Eq. (2.4), then Eq. (2.17) yields the Hamiltonian matrix elements H, 
of Eq. (2.16), and when 0 is the identity operator, then Eq. (2.17) gives the overlap 
matrix elements S. 

III. THE OVERLAP AND KINETIC ENERGY MATRIX ELEMENTS 

The overlap and kinetic energy matrix elements are ultimately expressible by 
means of Eq. (2.17) as a lattice sum of two-center integrals of the form 
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S n,~,m,,n2~2m2(a1~ a2, A, B) 

= x I dlrn,(a~, f,4) xn2b2(a2, rB) dz, (3.1) 

T n,l,m,,n212m2(a1~ a2, A, W 

= s xn,h (al, rA)( -iv’) xnzlzm2(a2, rd & (3.2) 

where the notation of Eq. (2.18) is employed. These two-center integrals are easily 
evaluated and can be written as 

S n,lrm,, n212m2(al T a2, A, B) 

= S”,,,, (a,, a,, A,, B,) Sll,r2(a19 a2, A,, 4) Sm,,m2(at, a2, A,, B,), (3.3) 
T nll,ml,n2f2m2(al y a2, 4 B) 

= -fF’kn2(aly a2, A,, BJ SI,,12h a2, A,, By) Smr,m2(al, a2, A,, B,) 

+ srw* h a2, A,: B,) Tl,,12h9 a2, A,, BY) Sml.m2(a1, a2, A,, B,) 

+ %m (al, a2, A,, B,) S1,.12h a2, A,, By) Tm,,,2(al, a2, A,, WI, (3.4) 

where 

Sn,.n2(alT a2, 4, U 

= exp( - HTiBt) 1 r, (::)~~-r’~(::)““-“E~,+~2(~‘, 

Ln2h x2, A,, B,) 

(3.5) 

=n2(n2- 1) &,.n2-2(a1, a2, A,, B,) 

- 2a2(2n2 + 1) S,,,,, (a1~@2~ A,, ~x)+44S,,,,2+2(al, a2, A,, B,), (3.6) 

where 

B=al+a2, H=a,a,lB, D = (a1 A + a2BYP, AB,=B,-A,, (3.7) 

and where 

0 if n=odd 

E,(B) = NJ-(“+ 1)‘2, N, = nl/2 +-j)!! if n=even. (3.8) 

1 if n=O 
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Usually the overlap and kinetic energy integrals are presented in such a manner 
that this factorization into x, y, and z components is obscured [S, 93. This 
factorization can be of great value. The lattice sum in Eq. (2.17) can be visualized 
as extending over all lattice site B-points within a sphere of radius R centered about 
point A. When a, and u2 are small, the associated radius R is large and may include 
thousands of B-points for which the multicenter integrals must be evaluated. The 
number of B-points contained within a sphere of radius R is proportional to R3 but 
the number of unique values of B,, B,, and B, is, usually, proportional to R. Thus 
the matrices, Si,j, can be precomputed for all unique values of B,, By, B, and the 
evaluation of the individual multicenter integrals reduces to just a few multiplica- 
tions and additions of these precomputed quantities. For example, in the case of 
silicon an R-value of 27 results in more than 1000 B-points. Within this sphere there 
are only 16 unique values of B,, By, and B,. Consequently, only 16 S-matrices 
must be precomputed and the more than 2000 integrals of overlap and kinetic 
energy can be rapidly evaluated from these precomputed quantities. 

The above development shows that the overlap and kinetic energy integrals can 
be evaluated with great rapidity. The computational burden of tight binding, 
however, rests squarely on the integrals of potential energy-the overlap and 
kinetic energy integrals have never been a major problem. However, as will be 
shown in the next section, this same factorization exists in the multicenter integrals 
of potential energy where it can be used to double advantage. 

IV. THE POTENTIAL ENERGY MATRIX ELEMENTS 

A. The Matrix Elements of V” 

The expression for Vg given in Eq. (2.8) can be rewritten as 

Vg(r) = 11 C a”:?(y) X,lM (7, r - tj), 
j y nlm 

where 

L, (7, r) = 1 xnlm CL r - R,). 

(4.1) 

(4.2) 

Using this notation, the multicenter integrals needed to evaluate the matrix element 
of Vg decomposes into a sum of the form 

=cc c an3~~(y)Xrl,,,nm3~~*rn2(~1, ~2, Y, A, B, tj3), (4.3) 
j3 Y whm3 
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where the notation of Eq. (2.18) has been employed and where 

X n,$:i~2m2(~,, ~2, Y, A, B> C) 

= 5 ~n,,w,(al, rA) Xn,,vn,h rc) xn+2(~2, rd dz 

=c[ x~,I,~, (~1~ y rA 1 2hrn, (Y, k- &) xn2,2m2(a2r rB) &. (4.4) 
Y' 

The individual three-center integrals can be easily evaluated to yield 

s xn,llm, (~1 7 rA 1 x,N,~, (Y, rc) xn212m2(a2, rd dz 
= un:~,h ~2, Y, A,, B,, C,) $,(a,, ~2, Y, A,, B,, C,) 

x U,$,,(% ~2, Y, A,, B,, CA (4.5) 
where 

u,:;,(h ~2, Y, A,, B,, C,) 

= exp( - HDs) exp( - Gmt) 

and where 

n=p+Y, P = (BD + W/J, G = ~yl/i. (4.7) 

The sum over v’ in Eq. (4.4) can be visualized as a sum over all C-points which lje 
within a sphere of radius R’ centered about point D. The radius R' is primarily a 
function of the parameters H and G. If a a 1, *, and y are small, the number of 
C-points in the lattice sum over v’ can be extremely large but, as was discussed in 
Section III, the number of unique values of C,, C,, and C, is usually quite small. 
The U-matrices can be precomputed for these unique values and the evaluation 
of each three-center integral is then reduced to a pair of multiplications of these 
precomputed values. 

Since the ~7’s of Eq. (4.1) can be expected to change in each successive iteration 
toward self-consistency, it is best to evaluate and store away the individual 
X-integrals for these need to be evaluated only once. The multicenter integrals of Vg 
in any given iteration can then be obtained from these precomputed X-integrals 
using Eq. (4.3). This requires permanent storage of an extremely large number of 
integrals. This storage problem is significantly reduced if the unit cell has rec- 
tangular symmetry. In such a case, the multicenter integrals do not need to be 
evaluated and storage requirements are greatly reduced. This simplification will be 
discussed in detail in Section V. 

581/83/l-13 



192 EARL E. LAFON 

B. The Matrix Elements of Vk 

The integrals involving Vk can be expressed as a reciprocal lattice sum over K,, 
of multicenter integrals of the form 

= J L,/,~, (al, rA) exp(iK, .rc) ~~~~~~~~~~~ rB) & (4.8) 

where 

r,=r-C 

and where the point C is some point in the lattice about which the Fourier series 
is expanded. Evaluation of this integral yields 

Vk n,~,m,,n~~pqh ~2,4 By C, K,) 

= Km (a,, ~23 Ax, Bn C,, K/J 

x KlLl2 (a,, a29 A,, By, C,, K,,) Km,,m2 (al, az7 4, B,, Cz, &I, (4.9) 

where 

Kn,,na(a~, ~123 Ax, B,, Cm Kx) 
= exp( - Ha:) exp( iK,m,) 

(4.10) 

where 

F,(/?, K) = (2i)-“n”‘fi -(n+1)/2 exp( --Ic~/~/?) H,,( -lc/2&) (4.11) 

and where the H,(A) are the Hermite polynomials. 
The sum over K, can be visualized as a sum over a sphere of radius K in 

reciprocal space. Again, use can be made of the factorization displayed in Eq. (4.9): 
the number of unique reciprocal lattice vectors inside a sphere of radius K is 
proportional to K3 while the number of unique values of K,,, K,,, K,, is usually 
proportional to K. 

C. The Matrix Elements of V’ 

The matrix elements of v’ can be expressed as a lattice sum of three-center 
integrals of the form 

(4.12) 
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These integrals can be easily evaluated to yield 

where 

Kn(B,6,Y,z)=y-(n+‘)exp(-P6z2/y)C n 
0 Y q 

(4.14) 

y=cY,+a,+6, 

and the function y*(a, x) is the entire incomplete gamma function [lo]. 
This is the only matrix element that does not factorize. As a result, even though 

there is just one exponential of this type for each atom in the unit cell, a major 
portion of the computational effort must be expended in evaluating the matrix 
elements of Y. 

Since the only purpose of I/’ is to reproduce the Coulombic singularity, the expo- 
nent 6 in Eq. (4.12) can be chosen to be extremely large. If 6 is large as discussed 
above, good results can be achieved by simply fitting the individual terms of I” to 
a sum of Gaussians as first suggested by R. N. Euwena [ 111. This yields an expan- 
sion of the form 

e-6’=fr N 1 a, e-&r2 (4.15) 
n 

and the required integrals can then be treated as factorizable and are evaluated in 
a manner identical to that described in Section 1V.A. In the example calculation of 
a 33-atom copper thin film to be discussed later, a 4-Gaussian fit results in a com- 
putational error of 0.7 eV for the copper 1s core state. However, for the conduction 
bands (which are the states of interest) the error introduced by the approximation 
is less than 0.002 eV. 
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V. RECTANGULAR SYMMETRY 

Many crystals have rectangular or cubic symmetry. In addition, many other 
crystals can be forced to assume such symmetry by simply choosing a larger unit 
cell. For example, in the case of hexagonal symmetry where the primitive lattice 
vectors are given by 

aI = 4$, - LO)/% 

a2 = 40, 1, 01, (5.1) 

a3 = 40, 0, 11, 

one can force rectangular symmetry by choosing “primitive” lattice vectors 

A, = 2a, + a2 = ,,&i, 

A, = a2 = a?, 

A,=a,=cf. 

(5.2) 

The resultant unit cell is twice as large as it needs to be, but rectangular symmetry 
has been achieved. More importantly, in supercell calculations of surfaces, 
amorphous materials, or defects, it is almost always possible to choose the supercell 
to have rectangular symmetry. The presence of -rectangular symmetry 
simplifies the tight-binding calculations. 

When rectangular symmetry exists, the lattice vectors can be written as 

In such a case, the potential energy term given in Eq. (4.4) becomes 

@‘,$,(a,, ~(2, Y, A,, B,, C,)=c U,:;,@,, ~12, Y, A,, B,, C,-~,a,). 
y* 

greatly 

(5.3) 

(5.4) 

(5.5) 

In this way, a lattice sum over N3 terms can be reduced to three summations of 
only N terms each. All other factorizable integrals of overlap, kinetic energy, and 
potential energy can be treated in an identical manner. 

The simplification introduced by rectangular symmetry goes further than this. 
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The multicenter integrals do not need to be evaluated at all. What is actually 
desired is the matrix elements of the secular equation of Eq. (2.16). For the case of 
rectangular symmetry, the matrix element for the above example, evaluated at point 
k in the Brillouin zone, can be written in factorized form as 

x CexP(ik,v2a2) @‘$,(a,, a2, Y, A,, By - v2a2, C,) 
w 1 

x xexp(ik,v,u,) W ,iA,(al, al, Y, A,, B,-~,a,, C,) 1 . (5.6) 
v3 

Thus the individual multicenter integrals do not need to be evaluated and only the 
W-matrices need to be calculated and permanently stored. Not only does this 
increase the speed of computation, but just an importantly, this procedure vastly 
reduces the amount of information which must be stored. 

Although only the matrix elements of I/g were analyzed in the above example, it 
is clear that the same factorization occurs for the matrix elements of overlap, kinetic 
energy, and Vk. If the expansion technique of Eq. (4.15) is employed, then the 
matrix elements of I/’ can also be factorized. Additionally, it should also be noted 
that this formalism is ideal for vector processing. 

VI. APPLICATION TO COPPER THIN FILM 

As an example of the power and speed of this technique, a calculation of the elec- 
tronic band structure of a 33-atom thick (100) copper thin film using the Chodorow 
[12] potential is presented here. The original tabular potential of Chodorow was 
least-squares fit to the functional form of Eq. (2.11) with n = 1= m = 0. This poten- 
tial was chosen in order to permit the results of this calculation to be directly com- 
pared with Burdick’s [12] calculation of bulk copper (one atom/cell) and with a 
Slater-Koster interpolation for a copper thin lim (33 atoms/cell) performed by 
Sohn et al. [13]. Following the notation of Eqs. (2.7)-(2.12), the potential used is 
characterized by 

6, = 105, 

l7;= 
- 0.47425 for K,=O 
0 otherwise ’ 
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N 

E 

TABLE I 

Coefficients of Gaussian Portion of Chodorow 
Potential 

1 166.266 1.03786 
2 -545.970 1.18583 
3 938.788 1.50391 
4 - 1289.78 2.03274 
5 1564.23 2.83552 
6 - 1803.68 4.01895 
7 1972.56 5.11692 
8 -2242.34 8.18403 
9 2319.53 11.4168 

10 -2613.09 16.5669 
11 1982.40 21.3932 
12 -2167.83 37.9455 
13 1856.66 44.7698 
14 -2405.29 68.5732 
15 1948.51 67.3400 
16 -353.397 316.602 
17 -724.562 1133.56 
18 -1630.57 4519.20 
19 -4229.24 21993.8 

FIG. 1. Band structure of bulk copper (1 atom/cell) 
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TABLE II 

Gaussian Fit to Singular Portion of Chodorow 
Potential 

1 - 116198.0 9774530.0 
2 - 33478.90 1463280.0 
3 - 14743.30 339249.00 
4 - 9409.770 119107.00 

and where the 19 rry coefficients and their associated y’s are given in Table 1. For 
this potential, the band structure of bulk copper (one atom per unit cell) was 
computed and compared with Burdick. The largest disagreement was 0.16 eV and 
the rms error was 0.05 eV. These small discrepancies are probably due to the failure 
of the fitted potential to exactly reproduce a mufftn-tin function. This bulk band 
structure is shown in Fig. 1. 

Of more interest is the calculation of the 33 atoms/cell copper thin film-for the 
computational burden increases dramatically as one increases the number of atoms 
in the unit cell. For this thin film calculation, the u’ term, in accordance with 
Eq. (4.15), was replaced by a sum of four Gaussians. The coefficients of this lit are 
given in Table II. The orbital exponents, ai, are those reported by Wachters [14]. 
None of Wachters’ exponents were omitted as is frequently done in order to reduce 
the computational burden. The computed band structure is shown in Fig. 2 and a 

FIG. 2. Band structure of copper 100 thin film (33 atoms/cell). 
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-15 ’ ’ ’ ’ ’ ’ ’ ’ ’ 

FIG. 3. Band structure of copper 100 thin film-region about Fermi energy. 

magnified view of the region about the Fermi energy is shown in Fig. 3. The d-band 
region is shown in Fig. 4. These figures compare quite favorably with the results of 
Sohn et al. [13]. Mulliken population analysis clearly shows the existence of 
surface states both as split-off bands and as resonance states. Unfortunately, these 
results are not self-consistent and are presented here only to illustrate the capability 
of the programs so far developed. The advantage of the technique presented here 
over that employed by Sohn et al. is that, unlike the Slater-Koster interpolation 

N 
E 
F 

I 
Ii 

-8 

-3 

-1s 

-11 

FIG. 4. Band structure of copper 100 thin film-the d-band region. 
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scheme, this first-principles calculation can be carried to self-consistency. Again 
none of the potential exponents nor the Gaussian orbital exponents were removed 
in order to reduce the computational burden. The time required to compute all the 
multicenter integrals (or those quantities which replace the multicenter integrals) of 
overlap, kinetic energy, and potential energy was approximately 5 CPU h on an 
IBM 3081K machine (15 mips). 

Many of the approximations often used (such as removing the long-range 
exponents as mentioned above) no longer need to be made and a higher criterion 
of accuracy can be demanded in the lattice sums. Empirically it is found that this 
results in a less ill-conditioned secular equation and a significantly higher degree of 
accuracy in the energies and wavefunctions produced. 

VII. SUMMARY AND CONCLUSIONS 

A family of programs has been developed which takes advantage of this fac- 
torized tight-binding (FTB) formulation. Full use of rectangular symmetry, when it 
exists, is employed. These programs are specifically directed to the treatment of sur- 
faces and interfaces and it is in these areas that the formulation introduced here can 
be applied to maximum advantage. These programs are, however, general in nature 
and entirely symmetry independent. As a result they can be applied to any crys- 
talline problem. To date, these programs have been successfully applied to copper 
(one atom/unit cell), silicon (two atoms/unit cell), alpha quartz (nine atoms/unit 
cell), berlinite (18 atoms/unit cell), a (100) copper surface (33 atoms/unit cell), and 
a treatment of an oxygen vacancy in quartz (72 atoms/unit cell). Empirically, it is 
found that the simplifications introduced by this formulation translate, in machine 
terms, into a considerable reduction of computational complexity and CPU time. 
Work is presently underway to make these programs self-consistent. In this regard 
it should be noted that this same factorization scheme can also be applied to the 
calculation of the electronic charge density over a rectangular mesh within a unit 
cell. 
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